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Abstract—Network-on-Chips are a critical part of modern
multiprocessors and their relevance will grow with the number of
cores. The development of future NoC designs relies on detailed
simulation models that accurately estimate their performance,
power and hardware cost.

Bypass routers are promising proposals due to their improved
performance. Bypass routers reduce latency thanks to a com-
bination of speculation, pre-routing (lookahead routing) and
buffer bypass, which also reduce energy consumption by avoiding
unnecessary buffer writes and reads. Multi-hop bypass NoCs,
known as SMART, even bypass the crossbar of multiple routers in
a single cycle. However, publicly available NoC simulators, such
as BookSim or Garnet, do not implement bypass mechanisms or
do not model them accurately.

In this work, we present Bypass Simulation Toolset (BST),
a set of tools to accurately simulate NoCs with single- and
multi-hop bypass routers. BST combines and extends several
simulation tools: an extension of BookSim with state-of-the-
art cycle-accurate bypass router models and additional flow
control mechanisms; an RTL implementation of multi-hop bypass
mechanisms based on OpenSMART; an API to ease a modular
integration of the BST NoC simulator in full system simulators;
and a set of scripts to automate simulation execution and data
collection.

To showcase BST, we i) validate BookSim SMART models with
the RTL implementation; ii) compare bypass and traditional non-
bypass router models; iii) integrate BookSim in gem5 using the
proposed API and compare it with gem5’s Simple and Garnet 2.0
NoC models; and iv) present a case study evaluating different
combinations of router types and topologies recently proposed
for NoCs, highlighting the flexibility of the BST toolset.

The toolset is available at www.atc.unican.es/software.html
Index Terms—BST, SMART, NoC, BookSim
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I. INTRODUCTION

The exponential growth of information required for and pro-
duced by High Performance Computing (HPC) or generated
by humans and objects (Big Data), creates an explosion of
digital data. In this new data deluge era, the explosion of
connected devices and the necessity to preserve security and
privacy will lead to more and more embedded processing.
In such scenarios, large-scale multi-cores and heterogeneous
manycores are key to provide such high performance and low
power demands.

Modern System-on-Chip (SoC) performance highly de-
pends on an efficient communication between processors and
with memory. A Network-on-Chip (NoC) delivers such high-
performance communication allowing for the integration of

a large number of cores on a single SoC. Recent processor
designs comprise hundreds [17], [22] or even thousands of
cores [40], [44], with a critical role of the NoC design.

Being part of the memory hierarchy, low latency is critical
for NoCs. Several techniques have been developed to minimize
zero-load router latency, such as speculation [50], pre-routing
or lookahead routing [23], and buffer bypass [37], which
also reduces energy consumption by avoiding unnecessary
buffer writes and reads. Multi-hop bypass mechanisms, such
as SMART [35], bypass multiple routers in each hop, relying
on broadcast control signals that coordinate the routers.

Selecting NoC parameters such as the NoC topology, links
bandwidth, concentration, or the router architecture are critical
for the overall NoC performance. The selection of such
parameters requires NoC simulation and FPGA emulation with
realistic applications and NoC models. Not modeling the NoC
in detail may lead to an incorrect (due to deadlocks or data
corruption) or suboptimal (due to a under- or over-provisioning
of hardware resources) system design.

BookSim is one of the most widely used network simulator
tools. The original version implements multiple topologies
and routing mechanisms [16]. BookSim2 extends the original
version with a focus on NoCs [30], including microarchi-
tectural details, channel delays or traffic models. However,
BookSim2 still lacks many mechanisms that are fundamental
for current high performance NoCs, such as single- and multi-
hop router bypass mechanisms [35], [37], [51], [52], flow
control mechanisms such as virtual cut-through (VCT, used
in many NoC designs [18], [35], [41], [58]), or bubble-based
deadlock avoidance mechanisms [10], [13], [42], [49], [59].
Bypass mechanisms, in particular, are highly relevant for
performance as NoCs typically operate in low-load regions.
Some bypass mechanisms are implemented in Garnet 2.0 [2],
[34], which is integrated in the gem5 simulator [8]. However,
publicly available implementations are not cycle-accurate and
recent patches are not compatible with the latest gem5 version.

This paper introduces Bypass Simulation Toolset (BST), a
set of tools used to model, research and develop contemporary
NoC designs. Figure 1 depicts the main elements that compose
BST. BST contains a new iteration of the BookSim simulator,
which incorporates multiple improvements including cycle-
accurate models for single- and multi-hop bypass mechanisms.
This tool is used for performance evaluation. A Bluespec
implementation of multi-hop bypass routers based on OpenS-
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Fig. 1: BST components.

MART [39] provides power and area results, and has been
validated with the Booksim model. The toolset is completed
with an API to integrate the BookSim simulator with full-
system simulators (such as gem5 [8]) and external NoC traffic
generators, and a set of scripting tools to automate simulation
execution and data analysis.

Specifically, the main contributions of this paper are the
following:

• A new iteration of BookSim implementing cycle-accurate
single- and multi-hop bypass and other advanced NoC
features, and a working RTL implementation of SMART
and SMART++ based on the OpenSMART framework.

• A flexible API that allows integrating BookSim with
other simulation infrastructures such as cycle-accurate
multi-core simulators (gem5), trace-based simulators or
complex synthetic traffic models (SynFull [4]).

• A set of scripts to automate executions, represent simu-
lation results, visualize traffic and profile the execution.

• An evaluation of the toolset, presenting its capabilities,
performance metrics and a case study which highlights
the benefits of bypass routers.

The rest of this paper is organized as follows: Section II
introduces the background on bypass routers and NoC simula-
tors. Section III describes in detail the BST toolset to simulate
NoCs with bypass mechanisms. Next, Section IV describes
the experimental environment and evaluates the proposed NoC
simulator accuracy and advanced features. Section V describes
the related work and, finally, Section VI concludes this work.

II. BACKGROUND

BST is a toolset used to model and develop contemporary
NoC routers with advanced features such as bypass. This
section presents the required background on bypass routers
(both single- and multi-hop bypass) and NoC simulators.

A. Bypass Router Networks-on-Chip

NoC routers are implemented with a pipeline with several
stages. For example, the traditional router model in [16]
employs 5 stages, which implies 5 cycles per hop. Bypass-
router NoCs reduce packet latency and power consumption
by pre-allocating the switch and skipping pipeline stages,
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Fig. 2: Single-hop bypass router architecture and pipeline. The
pipeline representation depicts two routers R1 and R2. R1

shows the standard pipeline for flits that do not take the bypass,
while R2 depicts the bypass path.

avoiding unnecessary writes and reads to buffers. The routing
information of each flit is sent to the next router one cycle
before sending the flit, using the Lookahead (LA) signal.
Lookaheads allow to precompute the route and enable a bypass
path to the switch to skip buffering and allocation stages.
Depending on the number of hops performed when using the
bypass, there are single- and multi-hop bypass mechanisms.

1) Single-hop bypass: Kumar et al. [37] introduced single-
hop bypass-routers. Figure 2 depicts the router architecture and
pipeline of a generic bypass router, including a bypass path
in the input unit. The architecture is similar to a traditional
virtual channel (VC) router with LookAhead Routing (LA-
R pipeline stage), input buffers (Buffer Write, BW), VC and
switch allocators (VA and SA) and a switch (Switch Traversal,
ST). The additional units required to handle Lookaheads are a
LookAhead Generator, a LookAhead Arbiter, and a multiplexer
LA priority Mux. These units create and forward LAs for
flits that advance to the ST stage, arbitrate among LAs and
resolve conflicts between LAs and local flits. As depicted in
the pipeline in Figure 2, bypass routers may reduce per-hop
delay to two cycles, for ST and link traversal (LT) stages.

Traditional bypass router implementations require the des-
tination buffer (about to be bypassed) to be empty, in order to
forward the packet. With this condition, a large number of VCs
is required to obtain significant performance benefits. More
recently, Non-Empty Buffer Bypass (NEBB) routers [51] is
capable to bypass non-empty buffers, and achieve competitive
performance with few VCs.

Three variants of NEBB have been introduced, based on
the flow control mechanism used: i) NEBB-WH only bypasses
non-empty buffers when packets are single-flit; ii) NEBB-
VCT bypasses non-empty bufferes for single- and multi-flit
packets, but only if there is room for the whole packet in the
downstream router, even if the bypassed buffer is empty; and
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Fig. 3: SMART multi-hop bypass router architecture (left) and pipeline displaying the transmission of two packets (right).

iii) NEBB-Hybrid combines NEBB-WH and NEBB-VCT to
maximize bypass utilization and provide the best performance.

2) Multi-hop bypass: Krishna et al. introduce multi-hop
bypass mechanisms in SMART [35]. Figure 3 shows its
architecture and pipeline. SMART implements a divided
Switch Allocator (local, SA-L, and global, SA-G) and relies
on broadcast control signals denoted Switch Setup Requests
(SSRs). Routers broadcast SSRs for flits that win SA-L, and
downstream routers configure their bypass, which skips the
router completely. After this, flits are forwarded and they
bypass all routers in the multi-hop, until they find a router
that had a conflict in SA-G and did not set up the bypass path.
Packet bypass in SMART requires three cycles per multi-hop:
SA-L, SSR broadcast and data forward.

Like classic bypass-routers, SMART requires an empty des-
tination buffer when allocating a VC to a packet, which implies
that a large number of VCs is required for good performance.
More recently, SMART++ [52] combines SMART with NEBB
to provide efficient multi-hop bypass with just one or few VCs.

B. NoC Simulators and Current Bypass Support

This section presents the required background on NoC sim-
ulation tools and their relation to bypass routers, specifically
BookSim2, Garnet and OpenSMART.

1) BookSim2: BookSim2 [30] is a flexible and detailed
network and NoC simulator with a multitude of topologies
and routing algorithms. It includes a cycle-accurate model
of a traditional five-stage pipeline router [16], with multiple
configurable elements such as allocators or buffering poli-
cies, and router optimizations like LookAhead routing and
speculative switch allocation. Besides, it includes a variety of
synthetic traffic patterns to feed the network. It also supports
request-reply traffic models, which are characteristic of cache
coherence communication. When using finite input queues,
it can be used to model the performance of multi-core cache
hierarchies with limited Miss Status Hold Registers (MSHRs),
in which the injection rate is dependant on the network latency.
However, BookSim2 does not include neither single-hop nor
multi-hop bypass-router models.

BookSim has been used in a multitude of diverse studies,
many of them mentioned in [30]. For example, in [4], it is used
to develop and validate SynFull, a simulation methodology
consisting of generating synthetic traffic models from traces
that mimics the spatial, temporal and burstiness distribution
of cache coherence traffic of full-system (FS) simulated
applications. In [42], a deadlock avoidance mechanism for
torus topologies called Flit Bubble Flow Control (FBFC) is
proposed, primarily oriented to NoCs as it does not require
multiple VCs or deep buffers like other alternatives, such as
dateline [16] and Bubble routing [10]. In addition, BookSim
is used as the interconnect model of GPGPU-sim [5], a
GPU simulator that runs CUDA applications. Even though
several works [12], [19], [29] have integrated it with the
gem5 simulator [8], there is not a public distributed version
of the integration interface which is compatible with the latest
releases of gem5.

2) Garnet and Garnet2.0: Garnet [2] is a NoC model inside
the gem5 full-system simulator. In previous versions of gem5
there were two versions of Garnet: fixed-pipeline and flexible-
pipeline. fixed-pipeline modelled cycle-accurately a traditional
five-stage pipeline router with a credit-based virtual channel
flow control. By contrast, flexible-pipeline does not model
the pipeline, implementing all router functions in a single
cycle. The router latency is customized by adding a latency
to each forwarded packet. Because of this implementation,
dependencies of packets in different pipeline stages are not
modeled in detail, which may hide NoC design flaws and/or
provide inaccurate results.

Garnet2.0 deprecates the detailed fixed-pipeline model, but
introduces additional routing algorithms and topological sup-
port for creating custom routings, replacing the previous
deterministic table-based routing with shortest-paths. Bypass
routers in Garnet are modelled by simply reducing the latency
of the flexible router. Additionally, there exists a patch to
include a SMART-1D NoC model based on Garnet2.0’s router.
However, the patch is relatively old and, at the time of writing,
it is not compatible with the Garnet code distributed in recent
versions of gem5.
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3) OpenSMART: OpenSMART [39] is an open-source tool
to generate NoC synthetizable Verilog code. It provides models
written in Bluespec and in Chisel. The Bluespec design
includes both implementations of a conventional single-cycle
and a SMART router, limited to single-flit packets. Since Blue-
spec code is compiled to Verilog, it allows to estimate area,
energy and timing results for an implementation that targets
actual FPGAs and ASICs, enabling design-space exploration.

However, actual tests of the Bluespec SMART model1 bring
up implementation issues that make packets reach incorrect
destination nodes or lose packets, making the current model
unsuitable for actual research or design work.

III. BST TOOLS

This section presents the components of BST. First, we
describe the new iteration of BookSim with bypass support.
Next, we detail the API of BST with emphasis on the BookSim
integration with gem5. Finally, we go into the SMART++
implementation in OpenSMART.

A. BookSim with Single- and Multi-Hop Bypass Routers

BST includes an enhanced version of BookSim which
adds several new router models to faithfully model different
characteristics of contemporary competitive NoCs. Besides the
three original router models in BookSim, BST adds four main
new models: two models for single-hop bypass (base and
NEBB-hybrid) and two models for multi-hop bypass (SMART
and SMART++). Additional intermediate implementations are
also included. In this section we first detail the contributions
in flow control and deadlock avoidance mechanisms. Next, we
mention changes required to support bypass routers, followed
by single- and multi-hop bypass implementations, which are
the most significant improvements.

1) Flow control mechanisms: The conventional input-
queued router in BookSim only supports WormHole (WH)
and Virtual Channel flow control mechanisms. The following
alternative flow control mechanisms have been implemented
in BST: Virtual Cut-Throught (VCT) [32], Bubble flow con-
trol [10], and Flit Bubble Flow Control Local (FBFC-L) [42].
The latter two are specifically designed to avoid deadlocks
in k-ary n-cube (torus) topologies, using VCT or WH re-
spectively. Single-hop bypass routers support most of these
mechanisms, while multi-hop bypass routers use VCT. The
implementation of the flow control mechanisms rely on credits
to monitor the buffer occupancy of adjacent routers.

2) Bypass routers: The implemented bypass-router models
are cycle-accurate and faithful representations of the microar-
chitectures described in [35], [37], [51], [52].

The original router model of BookSim models each pipeline
stage in two phases, evaluation and update, in order to avoid
the propagation of unintended information between stages
within a cycle. The evaluation phase performs the logic of
each stage without writing the inter-stage signals to avoid
interfering with the next pipeline stage, while the update

1Using the most recent commit: d4f5095 from 4 September, 2019

phase modifies these signals. The bypass-router models in BST
follow a different strategy to correctly define cycle boundaries:
the pipeline stages of each router are executed sequentially in
reversed order, i.e. link traversal, switch traversal, arbitration
stages, route computation, flit reception. Pipelines of different
routers are separated by channels that introduce a delay, avoid-
ing unintended data propagation in a single cycle. This strategy
simplifies the code at the cost of not having customizable
pipeline stage delays except for link traversal.

Bypass routers support most of the configurable parameters
of BookSim. Besides parameters that select the router model,
Table I collects the most relevant new parameters.

3) Single-hop Bypass: The enhanced BookSim simulator
in BST has five different bypass router models divided in two
categories. Classic bypass, which requires empty destination
buffers, has two variants: with and without LookAhead arbi-
tration. There are also three variants of NEBB: NEBB-WH,
NEBB-VCT and NEBB-Hybrid.

Lookaheads (LAs) and LA channels are properly modeled
in the network, following the same scheme of flits and flit
channels in BookSim.

Among the specific configuration parameters, three are the
most relevant: disable bypass, which deactivates the bypass, is
useful to obtain reference results; lookaheads kill flits, which
indicates the priority policy of the LA priority Mux (see
Figure 2); and guarantee order, which preserves an ordered
delivery of packets as required by some coherence protocols.

Dynamic input buffer management (shared buffers, im-
plemented as DAMQs, [57]) has been adapted to support
NEBB-Hybrid. Hybrid combines WH and VCT virtual channel
allocation, and packets may have bubbles caused by channel
interleaving. Buffer management must be aware of which flow
control is used by each bypassed packet to prevent deadlock.
When bypassing a packet using VCT, buffer slots are reserved
for the whole packet, i.e. credits are reduced by the packet size.
This guarantees that any packet that starts advancing to a buffer
will have space for it, regardless of any bubble. In contrast,
when transferring a packet using WH, credits are reduced flit
by flit (both for bypass and non-bypass paths).

Besides the standard statistics of BookSim, simulations
using single-hop bypass routers provide the following new
metrics: bypass utilization, as the ratio of the number of hops
that use bypass paths over the total number of hops done;
buffer and crossbar conflicts, as the number of times that these
resources are not available for flits or LAs; number of SA
winners killed, as the number of local flits that win switch
allocation and are later killed due to a conflict with LAs in
the LA priority Mux.

4) Multi-hop Bypass: The BST version of BookSim in-
cludes two main multi-hop bypass routers representative
of SMART [35] and SMART++ [52]. Partial versions of
SMART++ evaluated in [52] are supported too. Each model
implements VCT flow control. However, SMART++ is the
only mechanism that guarantees consecutive reception of
packet flits, since it allocates buffers, switches and bypass
paths on a packet by packet basis, instead of flit by flit.
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TABLE I: Representative parameters related to bypass routers in BookSim from BST.

BookSim parameter Description
Single-hop Bypass
bypass empty vc Specifies if empty destination VCs are required to forward packets
disable bypass Used to enable or disable router bypass.
lookaheads kill flits Specifies the priority used in the LA priority Mux: Priority to LAs or to local data flits.
guarantee order Avoid data reordering caused by buffer bypass requests that target the same output as a packet in a local buffer.
Multi-hop Bypass
smart type Specifies the version of SMART. The router model must be SMART (router=smart)
smart max hops Sets the maximum number on hops within a multi-hop (HPCmax)

In these models, flits can traverse multiple routers and links
in a single cycle. However, each channel in BookSim requires
a minimum delay of one cycle, making impossible the traversal
of multiple links in a single cycle without modifying the
structure of BookSim to a large degree. Instead, BST Booksim
accounts for the delay of a multi-hop link traversal in the
sender router. In a multi-hop path, the sender router calls the
reading function of the next router that evaluates whether the
bypass is enabled or not. If it is enabled, the same procedure
occurs with the subsequent router, until finding a disabled
bypass or reaching the end of the multi-hop. The flit is directly
saved in a pipeline register in the last router, prepared for
buffer write (BW) in the following cycle.

SSR channels are not modeled due to the complexity that
they introduce in the topology creation. Instead, SSR signals
are placed directly in the routers within each multi-hop,
after wining the local switch allocator. This implementation
is cycle-accurate and functionally equivalent to the actual
proposed implementation.

SMART simulations employ two additional parameters to
select the version of SMART and to define HPCmax, as
indicated in Table I.

In addition to the statistics given by BookSim, SMART
simulations includes: number of multi-hops; length of each
multi-hop; and bypass utilization as the ratio of flits bypassed
over the total number of flits transmitted by each router.

B. Simulator Integration API

BST provides an API to simplify the integration of BookSim
with other simulation environments, such as gem5. The API
abstracts the internal structure and presents simple commands
to interact with the simulation tool. This section explains the
integration with gem5, assuming the Ruby memory hierarchy
model is employed. Ruby defines multiple modules for each
element in the memory hierarchy and the coherence protocol,
and they communicate using the NoC.

The API supports the compilation of BookSim as a library,
instead of integrating its code into the other simulator like in
GPGPUSim [6]. The main advantage of linking BookSim as
a library is the automatic synchronization from the standalone
to the integrated version. Additionally, this decouples the
development and maintenance of both tools, and speeds up
the (time-consuming) compilation process when changes are
done only to one simulator.

Some code changes required to support the API and the
compilation as a library include a new namespace that en-

capsulates the complete BookSim code; modified compilation
parameters; changes in the traffic manager functions; and a
new class to interact with the API functions.

1) API functions: Besides the constructor and destructor
of the object (BookSimWrapper), the API consists of four
functions called from gem5:

a) GeneratePacket: Sends a new packet if there is
enough space in the injection queue. This function returns the
packet identifier of the packet created. This identifier is used to
create a dictionary to save the message data and destination of
the packet in the Ruby domain (the memory hierarchy module
from gem5).

b) RunCycles: Execute the number of cycles given. A
value larger than 1 cycle defines a faster frequency in the
BookSim NoC.

c) RetirePacket: Retires a packet from one of the ejection
queues of BookSim. This function returns an struct that con-
tains the packet identifier, the packet class (virtual network),
and statistics data. The packet identifier is used to gather
the message information from the dictionary entry previously
created by GeneratePacket. Then, the message is enqueued in
the correct Ruby switch and port.

d) CheckInFlightPackets: Checks whether there are flits
inside the network, in order to schedule a new network
simulation event for the next cycle. This is useful to reduce
computation when the network is empty.

2) Topology mapping: Unlike the integration of the gem5
modules Simple Network and Garnet 2.0, BookSim ignores
the topology defined in the parameters of gem5. The topology
modelled in BookSim is defined by its own parameters, the
same ones as when running in isolation. However, the user
must be aware of the mapping of Ruby tiles to BookSim nodes.

A Ruby tile comprises cache controllers from different
levels of the memory hierarchy and may include memory
directory and DMA controllers. Figure 4 shows an example
with a 16-tile network arranged in a 4 × 4 mesh. There are
two types of tiles represented in yellow and red. Light yellow
tiles have a private bank of L1 cache and a shared bank of L2
cache connected to a Ruby Router (RR). Dark red tiles also
include memory directory (DIR) and DMA controllers.

The topology configuration from gem5 specifies a tile
organization in Ruby, assigning a consecutive tile ID to each
Ruby Router. The actual gem5 topology is irrelevant, since
BookSim only employs the tile ID to map the resources.

A mapping algorithm has been adapted to take into account
relative location of each resource in the NoC placement.
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Fig. 4: Example of 16-tile network mapped as a 2 × 2 mesh
with concentration 4 in BookSim.

Figure 4 presents an example in which tiles are arranged in
a 2 × 2 mesh with concentration 4. A naive mapping using
increasing tile index would map tiles with consecutive IDs to
the same router; hence, the first router (BS0) would include
two Ruby tiles with attached memory controllers (R0 and
R3), altering the tile placement in the chip. The mapping of
tiles to BookSim nodes implemented in BST preserves the the
location of the tiles with memory controllers in the corners
of the chip. To achieve this arrangement, the node mapping
from the concentrated mesh topology in BookSim has been
modified: tiles 0, 1, 4 and 5 are connected to the first router
(BS0), and so on.BST includes support for the most frequent
topologies: square meshes, tori and flattened-butterfly, with
and without concentration.

Despite the incurred complexity, this solution provides
flexibility. For example, it allows users to define a tile per
cache, memory or DMA controller, and interconnect them as
desired in BookSim’s topology.

C. OpenSMART++ RTL Implementation

BST includes a Bluespec System Verilog implementation
of SMART and SMART++ derived from OpenSMART [39].
This model allows to generate valid RTL code and to estimate
area, power and frequency metrics. Like OpenSMART, the
implemented models only support single-flit packets.

The pipeline model presented in OpenSMART significantly
differs from the original proposal in SMART. For example,
ST is implemented in the second stage after winning SA-
L, instead of the third stage as discussed previously (see
Figure 3b). This complicates the comparison between the
functional models in BookSim and the results from Bluespec.
Additionally, initial testing of the models presented execution
errors, with packets that were missed or not delivered to their
correct destination, preventing any productive use of the tool2.

To be able to compare the BookSim and Bluespec models,
we have reorganized the router stages. Our implementation
follows the original organization from SMART depicted in
Figure 3. Additionally, our model corrects some errors and

2Using the most recent repository version at the time of writing, commit
d4f5095.

provides working models that deliver all packets to the correct
destinations. Some specific changes are detailed next.

Several issues with Bluespec rules prevented successful
compilation, specifically cyclic dependencies of rules. Rules
are the main coding block of Bluespec to describe how data
is moved from state to state. The Bluespec compiler detects
data dependencies and schedules rules in an appropriate order,
which may be explicitly given in the code. Cyclic dependen-
cies in these rules may prevent compilation.

The following changes simplified the implementation and
mitigated the identified issues. First, OpenSMART employs a
custom library to implement FIFO structures. These modules
have been replaced with the Bluespec built-in modules FIFO
and FIFOF (the latter including explicit full and empty signals).
These changes are implemented in the Credit Unit, Input Unit,
Smart Flag, Smart Router and Traffic Generator Units. Simi-
larly, the CReg module that implements an Ephemeral History
register [55] has been replaced by explicit combinational logic,
which is less prone to generate cyclic rule dependencies when
modifying code.

The implementation of SMART++ essentially required
modifications to the VC Selector (VS) in OpenSMART. The
original SMART VS implements a pool listing free VCs
in the neighbor router. An empty VC is extracted when a
packet wins SA-G, and inserted when a credit is received.
The implementation is quite simple as SMART requires empty
destination VCs to forward packets, ignoring buffer depth
and occupation. In contrast, SMART++ employs buffer depth
and occupation. Flow control credits, already implemented in
OpenSMART, are leveraged to monitor the available space in
each VC. The increase in logic is very moderate.

D. BST Scripting Tools

Finally, BST provides a set of python scripts used to
automate the most frequent tasks with the simulation tools.
Launching scripts are used to submit multiple simulation jobs
to a compute cluster job scheduler. The provided scripts are
specifically adapted to the SLURM workload manager [60].
Other scripts are used to ease simulation data recovery, visual-
ize the evolution of the router pipelines, and plot the results.

IV. EVALUATION

This section presents an evaluation of the BST tools. First,
we validate that the SMART models are cycle-accurate. Next,
we compare the previous BookSim router model with the
new single- and multi-hop bypass router models. Then, we
show gem5 results obtained with the developed BookSim
API. Finally, we present an example use cases that evaluates
different topologies and the impact of bypass on each case.

A. SMART Model Validation

This section demonstrates the accuracy of the multi-hop
bypass models implemented. We compare the results ob-
tained using the BookSim simulator and using OpenSMART
RTL simulations with the Bluespec System Verilog simulator.
The network simulated is a rectangular 4 × 8 mesh with
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Fig. 5: Packet latency and throughput of the SMART++
models implemented in Bluespec and BookSim.

HPCMAX = 4. Both simulators generate random uniform
traffic with single-flit packets, due to the limitation of the
OpenSMART implementation mentioned in Section II-B3.

BookSim and the Bluespec simulator account injection and
consumption latency differently: several constant cycles in
both processes are only modelled in Booksim. For this reason,
raw results differ in a constant value. We have identified this
discrepancy and adjusted the results of OpenSMART to match
the zero load packet latency of BookSim.

Figure 5 shows average packet latency (Figures 5a and 5b)
and maximum throughput (Figure 5c) with both BookSim and
OpenSMART models. It considers multiple combinations of
VC buffer depths (1 and 4 slots in latency plots; 1 to 8 slots
in the case of throughput) and number of VCs. The results use
the SMART++ model; SMART results follow the same trend,
but are omitted for the sake of space.

Despite comparing different router and bypass implementa-
tions in different simulation tools, the results of both models
are nearly the same. Packet latency is identical in both models
until reaching saturation, as shown in Figures 5a and 5b.
After saturation, there are small differences; the maximum
throughput difference is 5%, when using 2 VCs of 1 flit.

B. Bypass Router Model Comparison

In this section, we evaluate the router model of BookSim
and the most advanced versions of bypass routers, i.e. NEBB-
Hybrid single-hop bypass and SMART++ multi-hop bypass
respectively, both of them implemented in BookSim. The
networks simulated is an 8 × 8 and a 16 × 16 mesh with a
single VC and 20-flit input buffers. Results are obtained with a
random uniform traffic injection pattern; other traffic patterns
produce similar results and are omitted for brevity.

Two models from BookSim are compared: 5s-router stands
for BookSim’s 5-stage router, which follows the traditional
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Fig. 6: Evaluation of 5- and 4-stage routers (5s-router and
4s-router), NEBB-Hybrid and SMART++ using BookSim.
Latency results for different network and packet sizes.

pipeline in [16]; 4s-router reduces the pipeline depth to 4
stages, employing LookAhead routing and speculative VA, but
no buffer bypass. These two models rely on WH flow control.
The models with single-hop bypass is denoted NEBB-Hybrid.
In this model, the network interface (NI) generates a LA to
allow the bypass in the injection router, at the cost of an
extra cycle delay in the injection link so the LA arrives one
cycle before the data flit. Bypass has priority over local flits.
The multi-hop bypass model is SMART++, and it employs
HPCMAX = 8. In this case, local flits have priority over
SSRs to avoid pathological performance issues [35].

Figure 6 shows average packet latency, for packets of 1
flit (Figures 6a and 6c) and 5 flits (6b and 6d). In the 8 × 8
mesh, the single-flit zero load packet latency of 5s-router is
reduced by 39.47% with 4s-router, 55.71% with NEBB-Hybrid
and 68.06% with SMART++. With packets of 5 flits, this
reduction is 34.7%, 48.55% and 60.52% respectively. Larger
network sizes increase the benefit of speculation and bypass, as
observed in Figures 6c and 6d. Saturation throughput, detected
by the point in which latency skyrockets, also benefits from
speculation and bypass; interestingly, the result for 4s-router
without bypass is slightly better than NEBB-Hybrid.

Since NoCs load is typically very low, zero-load latency
is one of the most relevant metrics. Figure 6e combines
base latency results for different router models and networks.
BST allows to quantify the benefit of speculation and bypass.
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Fig. 7: Evaluation of Simple, Garnet2.0 and BST in gem5.

Interestingly, for small networks (4 × 4) the use of multi-
hop bypass is not beneficial from single-hop bypass. This is
explained because average distance is very small and the multi-
hop bypass pipeline has an additional stage. By contrast, in
large networks the benefit of multi-hop bypass is enormous.

Figure 6f shows the simulation time for the different router
models and offered load in an 8x8 mesh with 10,000 simu-
lated cycles. Logically, the time grows with the offered load,
linearly before reaching the saturation point and exponentially
later, until injection buffers become saturated. Both bypass
models are faster than the original models of BookSim2 and
SMART++ is the fastest model because each of its packets
performs a lower amount of hops.

C. BST Integration with gem5

This section presents a test and evaluation of gem5 with
the BookSim API introduced in Section III-B. We simulate
a system that consists of 64 ARM DerivO3CPU running
at 3GHz. The gem5 Ruby memory model is enabled, using
the MOESI CMP directory coherence protocol. The mem-
ory hierarchy implements 32KB L1I and 64KB L1D private
caches, both with associativity 2. The L2 cache is shared and
distributed into 64 banks of 256KB, 16MB in total. There are
four memory controllers located at the corners of the mesh.
The interconnect frequency is 3GHz and four NoC models are
evaluated: Simple Network, Garnet 2.0 (both part of gem5),
BST NEBB-Hybrid and BST SMART++. In Garnet 2.0 we
set a router latency of 2 cycles including the link latency,
similar to the NEBB-Hybrid latency. We use the default buffer

configuration of the Simple Network; the other detailed models
implement 3 virtual networks of 1 VC with buffers of 10 slots
each, and a DOR-XY routing mechanism.

We run multiple PARSEC suit benchmarks [7] in Full-
System mode. We use the simlarge input set and 64 software
threads in all of them. Due to the long simulation times, the
results correspond to the first 300 million simulated cycles.

Figure 7 shows different metrics of the executions, including
an average for all the benchmarks. Notice that Simple does
not provide NoC statistics. In general, the injected traffic load
(Figure 7b) is extremely low, as observed in the experimental
results of different studies [27], [47]. In this situation, the most
relevant parameter for performance is the base latency of the
system. Canneal with BST SMART++ produces the highest
offered load, of only 3.03%. BST SMART++, with the lowest
packet latency (Figure 7a), injects more flits, which translates
to lower miss latency (Figure 7d) and higher IPC (Figure 7e).

The average number of hops per packet (Figure 7c) are
mostly unaffected by the benchmark. They are practically
identical between Garnet2.0 and BST Hybrid, and around 2
hops lower in SMART++ because of multi-hop bypass. The
average packet latency results (Figure 7a) are close to the zero-
load latency, as a result of the low injection rates. Ferret is
the only exception, with a higher packet latency in the three
models, with similar results among them despite the hop count
reduction in SMART++. In this case, the latency increase
comes from packets waiting in injection queues, i.e. before
packets are injected into the NoC. The miss latency (Figure 7d)
and IPC results (Figure 7e) show the effect of packet latency in
the overall performance. The lower the latency, the lower the
miss latency and the higher the IPC. Excluding the unrealistic
Simple, the BST SMART++ model achieves the best results.

The simulation speed is presented in Figure 7f normalized to
the speed of Simple, which is the fastest due to its higher level
of abstraction. Garnet2.0 presents a significant slowdown, with
an average normalized execution time of 0.66× despite being
designed as part of the Ruby memory system, so it is clear
that a detailed NoC modelling has a high impact on the overall
simulation time. The BST models are slower, owing to their
highly detailed implementation. Additionally, unlike the event-
driven gem5, BookSim is time-driven, which complicates the
synchronization between the simulators. A low injection rate
increases the impact of the overhead of BST, suffering the
complete NoC simulation overhead for only a few in-flight
packets. Specifically, applications with very low offered load
in Figure 7b (blackscholes, dedup, facesim, freqmine, vips,
x264) present a larger overhead when switching from Garnet
to BST in Figure 7f. The average normalized execution time
of BST is 0.21× in Hybrid and 0.14× in SMART++.

D. Case Study: Topology Evaluation

This section presents a study of topology selection using
the BST toolset. The topology and router architecture are the
main factors that define the base latency of a NoC. Mesh is
the most commonly used topology for NoCs. However, other
topologies such us tori and the flattened butterflies (FBFLY)
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Fig. 8: 8× 8 mesh, torus and FBFLY topologies evaluation.

have been studied as alternative designs for NoCs [33]. In this
example, we compare different combinations of topologies and
routers proposed for NoCs. The configurations evaluated are
a flattened butterfly with 5-stage router (FBFLY - 5s router);
folded torus with NEBB-Hybrid (Torus - NEBB-Hybrid); mesh
with SMART++, (Mesh - SMART++); and flattened butterfly
with NEBB-Hybrid (FBFLY - NEBB-Hybrid). Note that multi-
hop bypass makes no sense in a FBFLY, since only one hop
occurs per dimension. All the simulated networks have a size
of 8× 8 and two configurations of VCs are used: 1 VC of 24
flits and 4 VCs of 6 flits. To simplify the analysis, the link
latency of the folded torus and flattened butterflies is 1 cycle
independently of the link length and HPCMAX in SMART++
is 8. The traffic generator serves random uniform traffic with
packets of 5 flits.

Figure 8 shows average packet latency for all configurations.
The zero load latency of each topology and router combination
is the expected. FBFLY - 5s router presents the highest base
latency despite the high degree of the routers (7 + 7 = 14
ports per router), because of its high per-hop latency. Torus
- NEBB-Hybrid and Mesh - SMART++ have similar base
latency, but Torus - NEBB-Hybrid achieves higher throughput
with the same router degree (4 ports maximum). Overall, the
best combination in terms of performance is FBFLY - NEBB-
Hybrid but with a high cost given the router degree 14.

In terms of throughput, there are several worth mentioning
observations. FBFLY - 5s-router is very sensitive to Head of
Line Blocking (HoLB) issues, since the configuration with 4
VCs in Figure 8b triples the throughput of 1 VC in 8a. The
other three configurations show a very small dependence on
the buffer count, since they rely on Non-empty buffer bypass.

V. RELATED WORK

A. Bypass Router Support

Section II-A presents the minimal background on bypass
routers. There exist actual NOC architectures using bypass,

such as SCORPIO [18] or SWIFT [36]. Alternative bypass
mechanisms have been implemented in different proposals,
such as Token Flow Control [38], SWIFT [36] or Short-
path [53]. These mechanisms are variations of the general idea,
and have not been implemented in BST.

Similarly, different proposals modify the implementation of
SMART multi-hop bypass presented in Section II-A2. For
example, the original paper by Khrisna et al. [35] introduces
several variants, such as the use of SMART 2D, consumption
bypass, low-load router stage bypass, and different priority
policies. Other variations include improvements to SSR arbi-
tration in SHARP [3], the SSR network in [15] or the use of
wireless links for the broadcast signals in [21]. These alterna-
tives have not been considered in the BookSim implementation
presented in Section III-A4, but some of them would require
minimal code changes to be implemented.

B. Simulation Tools and Analytical Models

Section II-B already discussed BookSim, Garnet and
OpenSMART. There exist many other open-source NoC sim-
ulators, such as [1], [11], [14], [46], [48]. While these tools
provide very diverse and relevant characteristics, as far as we
know they do not support bypass router models.

In some cases, such NoC simulators are integrated with
other tools in order to evaluate shared-memory systems. Most
simulation platforms at this level tend to be cycle-accurate
to faithfully model the processing cores and the memory
hierarchy. However, most of such proposals make use of
simple NoC architectures [9], [56] or have employed router
architectures without bypass features [8].

Even the largest state-of-the-art industrial FPGA platforms
cannot simulate large multicores with tens of high perfor-
mance cores, accelerators, a complex NoC and high bandwidth
memory controllers. As an alternative, SynFull [4] proposes to
abstract the core details and simulate or emulate only the NoC
and memory hierarchy with a simple finite state machine that
represents the traffic injected by the cores to the NoC. Such
approach can be extended to incorporate accelerators although
it is left for future work in the original paper.

For larger deployments, subsystem simulators are common
tools that allow to obtain performance predictions and assist
computer architects into designing specific parts of HPC
systems. Mubarak et al. [45], for example, propose CODES,
a fast and flexible simulation framework to model state of the
art Torus and Dragonfly networks at a large-scale. Compared
to this, our work focuses on a detailed NoC model that should
be included in a state-of-the-art simulator like gem5, oriented
to evaluate the nodes (servers) composing such big systems.

In this direction, prior work proposed simulation methodolo-
gies to evaluate the performance of large-scale parallel appli-
cations on distributed systems [20], [26], [61]. Most proposals
use analytical models to estimate node performance (no cycle-
accurate models are used) or system software interactions.

SST is a multi-scale simulator often used in combination
with other simulators to model distributed applications. In
BE-SST, authors combine SST with coarse-grained behavioral
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emulation models abstracting from microarchitectural details
in favor of simulation speed. Other implementations integrate
SST with a highly accurate simulator but require too costly full
system simulations to produce a wide set of experiments [28],
[54]. Since SST is compatible with gem5, it could benefit from
the proposals in this paper.

The MUlti-level SimulAtion methodology (MUSA) enables
fast and accurate performance estimations in scenarios with
several thousands of cores [24], [25]. MUSA takes into ac-
count inter-node communication, node-level architecture, and
system software interactions. MUSA combines sampling tech-
niques with different simulators based on analytical models
and cycle-accurate traces. The NoC model in MUSA is a
simple multi-bus without any notion of the router architecture.
Integrating BookSim in MUSA is an interesting future work.

With the same objective, application specific analytical
models [31], [43] use a small set of parameters to predict
performance for a single application on large systems. Once
those models are created and validated they are able to
accurately predict performance with negligible compute and
time cost. The main downside of these models is that they have
little flexibility; any significant change in the application or
hardware architecture requires the model to be updated, refined
and validated again. Our methodology focuses on hardware
microarchitectural exploration and iterative fast co-design; new
features can be tested on all applications at the moment they
are included in the simulator.

VI. CONCLUSIONS

This work presents BST, a simulation toolset to design and
evaluate NoCs with single- and multi-hop bypass-routers. The
toolset includes cycle-accurate simulation models of state-of-
the-art single- and multi-hop bypass mechanisms for Book-
Sim; an operational RTL model of SMART and SMART++
based on OpenSMART; and an integration API for BookSim
to simplify its incorporation in other simulators.

We have shown the accuracy of the different SMART
models, the utilization of the API to integrate BookSim in
gem5, and the flexibility of the toolset to carry out evaluations
of bypass routers in different topologies and configurations.
The toolset is available at www.atc.unican.es/software.html.
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